Please note: The Research + Innovation office will be closed for the holidays from noon on December 24 through January 2nd, inclusive. 鉂勶笍 Veuillez noter que le bureau de la Recherche et de l'Innovation sera ferm茅 pour les vacances du 24聽d茅cembre 脿 midi jusqu鈥檃u 2聽janvier inclus.
New drug shows promise against Duchenne muscular dystrophy
A novel drug holds promise for treating Duchenne muscular dystrophy (DMD), a rare genetic disorder that causes severe muscle degeneration.
平特五不中 researchers have discovered that an experimental compound called K884 can boost the natural repair abilities of muscle stem cells. Current treatments can slow muscle damage, but don鈥檛 address the root problem.
DMD affects about one in 5,000 boys worldwide, often leading to wheelchair dependence by the teenage years and life-threatening complications in early adulthood.
鈥淏y strengthening muscle repair rather than just slowing degeneration, therapies that stimulate muscle stem cell function have the potential to improve quality of life for DMD patients. It may help restore muscle function and, ultimately, offer greater independence,鈥 said senior author Natasha Chang, Assistant Professor in 平特五不中鈥檚 Department of Biochemistry.
Building stronger muscles from stem cells
Biotechnology company originally developed the drug for cancer and metabolic diseases, but it has not yet been approved for any specific use. This preclinical study marks the first time the drug has been tested in DMD cells.
The researchers put DMD-affected muscle stem cells from humans and mice under the microscope to see how they responded to the drug. They observed that experimental drug blocks specific enzymes, allowing muscle stem cells to develop into functional muscle tissue.
鈥淲hat makes K884 particularly promising is its precision. It targets DMD-affected cells without affecting healthy muscle stem cells,鈥 said Chang.
Unlike gene therapy, which targets specific genetic mutations and isn鈥檛 suitable for all patients, K884 works at the cellular level, restoring muscle repair regardless of the mutation causing the disease. This makes it a potential treatment option for all DMD patients, she added.
A new understanding of DMD
The findings, published in , add to a growing body of evidence that challenges previous assumptions about DMD鈥檚 root cause.
鈥淭his disease has historically been seen as a muscle problem caused by a missing protein called dystrophin,鈥 said Chang. 鈥淏ut new research, including our own, shows that restoring stem cell function is just as critical for repairing muscle.鈥
The team plans to keep testing the drug, focusing on its safety and long-term effects, while also exploring other related compounds, some of which are already involved in early human trials.
This study was supported by the Stem Cell Network, Defeat Duchenne Canada, the Canadian Institutes of Health Research (CIHR), the Richard and Edith Strauss Canada Foundation and the Aclon Foundation.
About the study
鈥溾 by Yiyang Liu et al. was published in Life Science Alliance.