Mark Driscoll (PhD)
Associate Professor聽
PhD, BEng
Currently supervising students
Biomechanical understanding of mechanisms that govern our musculoskeletal system聽
Mark Driscoll, Eng., Ph.D. is an Associate Professor and a Profession al Engineering (OIQ) with extensive medical device design experience. He also holds the NSERC Chair Design Engineering for Interdisciplinary Innovation of Medical Technologies.鈥疭ince joining 平特五不中, he has taught courses solely dedicated to design and biomechanics. Prof. Driscoll, before joining 平特五不中, was part of several start-up medical device companies where he successfully commercialized medical devices currently being used in over 15 countries. Moreover, Prof. Driscoll while in industry, was awarded 鈥淏est New Technology for Spine Care in 2014鈥 and 鈥淎NSYS Hall of Fame鈥 in 2015 for best use of engineering simulation platform for simulation spinal surgeries for medical device design analyses. Overall, over the last 10 years, Prof. Driscoll has authored and co-authored 1 book, 50+ publications, 6 white paper reports, and 125 peer reviewed conference presentations in the medical device field while working in industry and academia. Moreover, during this time, Prof. Driscoll has co-invented and designed 24 medical device patent applications. Since joining 平特五不中 in 2016, Prof. Driscoll has established a team of 17 (4 Post-Docs, 6 PhD, 4 Master鈥檚, 2 research assistants, and a lab manager) and supervised over 40 undergraduate students in design projects. Further, while in industry Prof. Driscoll was鈥痑warded over 5 million in R&D design of medical devices and while at 平特五不中 has been awarded over 5 million in research funds while actively collaborating with top tier medical device companies. Prof. Driscoll鈥檚 design, developments and research were the feature of 10 press releases. Prof. Driscoll is an active Canadian Engineering Education Association (CEEA) and is part of the Strategic Interest Group towards improved Design Education. Most recently, in June 2018, Prof. Driscoll was awarded the Award for Outstanding Achievement, member 35 years and under, from the Order of Engineers of Quebec (OIQ) in acknowledgement of contributions in the Medical Technology Sector.
Global interests reside in improving the biomechanical understanding of mechanisms that govern our musculoskeletal system. The use of complementary research platforms (in vivo, ex vivo, and in silico) foster novel findings towards the understanding of healthy system and the onset and/or pathomechanism of musculoskeletal disorders. Such translational research is interdisciplinary and requires a multifaceted approach to promote the engineering conception and design of new mechanical solutions.聽
More specifically, the laboratory seeks to better understand the control system governing spinal stability. Of further interest is how this control system responds when mechanical biases are introduced resulting in physiological stress shielding. Additionally, performing research and developments towards鈥痳eal time physics driven virtual reality simulators for surgical training.聽