Program Requirements
This program covers a core of programming and software engineering courses and allows students to select courses that aim at practical aspects of software development.
Required Courses (36 credits)
* Students who have sufficient knowledge in a programming language do not need to take COMP 202 and can replace it with additional computer science complementary course credits.
-
COMP 202 Foundations of Programming (3 credits) *
Overview
Computer Science (Sci) : Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics.
Terms: Fall 2024, Winter 2025, Summer 2025
Instructors: M'hiri, Faten (Fall) M'hiri, Faten (Winter)
3 hours
Restrictions: Not open to students who have taken or are taking COMP 204, COMP 208, or GEOG 333; not open to students who have taken or are taking COMP 206 or COMP 250.
COMP 202 is intended as a general introductory course, while COMP 204 is intended for students in life sciences, and COMP 208 is intended for students in physical sciences and engineering.
To take COMP 202, students should have a solid understanding of pre-calculus fundamentals such as polynomial, trigonometric, exponential, and logarithmic functions.
-
COMP 206 Introduction to Software Systems (3 credits)
Overview
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2024, Winter 2025
Instructors: Errington, Jacob (Fall) Vybihal, Joseph P; Kopinsky, Max (Winter)
-
COMP 250 Introduction to Computer Science (3 credits)
Overview
Computer Science (Sci) : Mathematical tools (binary numbers, induction,recurrence relations, asymptotic complexity,establishing correctness of programs). Datastructures (arrays, stacks, queues, linked lists,trees, binary trees, binary search trees, heaps,hash tables). Recursive and non-recursivealgorithms (searching and sorting, tree andgraph traversal). Abstract data types. Objectoriented programming in Java (classes andobjects, interfaces, inheritance). Selected topics.
Terms: Fall 2024, Winter 2025
Instructors: Alberini, Giulia (Fall) Alberini, Giulia (Winter)
-
COMP 251 Algorithms and Data Structures (3 credits)
Overview
Computer Science (Sci) : Introduction to algorithm design and analysis. Graph algorithms, greedy algorithms, data structures, dynamic programming, maximum flows.
Terms: Fall 2024, Winter 2025
Instructors: Alberini, Giulia; Henderson, William (Fall) Becerra, David (Winter)
-
COMP 273 Introduction to Computer Systems (3 credits)
Overview
Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.
Terms: Fall 2024, Winter 2025
Instructors: Elsaadawy, Mona (Fall) Kry, Paul (Winter)
3 hours
Corequisite: COMP 206.
-
COMP 302 Programming Languages and Paradigms (3 credits)
Overview
Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.
Terms: Fall 2024, Winter 2025
Instructors: Pientka, Brigitte (Fall) Errington, Jacob (Winter)
-
COMP 303 Software Design (3 credits)
Overview
Computer Science (Sci) : Principles, mechanisms, techniques, and tools for object-oriented software design and its implementation, including encapsulation, design patterns, and unit testing.
Terms: Fall 2024, Winter 2025
Instructors: Robillard, Martin (Fall) Campbell, Jonathan (Winter)
-
COMP 310 Operating Systems (3 credits)
Overview
Computer Science (Sci) : Control and scheduling of large information processing systems. Operating system software - resource allocation, dispatching, processors, access methods, job control languages, main storage management. Batch processing, multiprogramming, multiprocessing, time sharing.
Terms: Fall 2024, Winter 2025
Instructors: Kopinsky, Max (Fall) Kopinsky, Max (Winter)
3 hours
Prerequisite: COMP 273
-
COMP 361D1 Software Engineering Project (3 credits)
Overview
Computer Science (Sci) : Software development process in practice: requirement elicitation and analysis, software design, implementation, integration, test planning, and maintenance. Application of the core concepts and techniques through the realization of a large software system.
Terms: Fall 2024
Instructors: Vybihal, Joseph P (Fall)
Corequisite: COMP 303
Restriction: Not open to students who have taken the 3 credit version of COMP 361.
Students must register for both COMP 361D1 and COMP 361D2
No credit will be given for this course unless both COMP 361D1 and COMP 361D2 are successfully completed in consecutive terms
-
COMP 361D2 Software Engineering Project (3 credits)
Overview
Computer Science (Sci) : See COMP 361D1 for course description.
Terms: Winter 2025
Instructors: Vybihal, Joseph P (Winter)
Prerequisite: COMP 361D1
No credit will be given for this course unless both COMP 361D1 and COMP 361D2 are successfully completed in consecutive terms
-
MATH 223 Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2024, Winter 2025
Instructors: Elaidi, Shereen; Bellemare, Hugues (Fall) Macdonald, Jeremy (Winter)
-
MATH 240 Discrete Structures (3 credits)
Overview
Mathematics & Statistics (Sci) : Introduction to discrete mathematics and applications. Logical reasoning and methods of proof. Elementary number theory and cryptography: prime numbers, modular equations, RSA encryption. Combinatorics: basic enumeration, combinatorial methods, recurrence equations. Graph theory: trees, cycles, planar graphs.
Terms: Fall 2024, Winter 2025
Instructors: Macdonald, Jeremy; Goh, Marcel (Fall) Fortier, J茅r么me (Winter)
Complementary Courses (13 credits)
3 credits selected from:
-
COMP 330 Theory of Computation (3 credits)
Overview
Computer Science (Sci) : Finite automata, regular languages, context-free languages, push-down automata, models of computation, computability theory, undecidability, reduction techniques.
Terms: Fall 2024, Winter 2025
Instructors: Waldispuhl, J茅r么me (Fall) B茅rub茅-Valli猫res, Mathieu (Winter)
3 hours
Prerequisite: COMP 251.
-
COMP 360 Algorithm Design (3 credits)
Overview
Computer Science (Sci) : Advanced algorithm design and analysis. Linear programming, complexity and NP-completeness, advanced algorithmic techniques.
Terms: Fall 2024, Winter 2025
Instructors: Robere, Robert (Fall) Hatami, Hamed (Winter)
10 credits from:
-
COMP 322 Introduction to C++ (1 credit)
Overview
Computer Science (Sci) : Basics and advanced features of the C++ language. Syntax, memory management, class structure, method and operator overloading, multiple inheritance, access control, stream I/O, templates, exception handling.
Terms: Winter 2025
Instructors: Zammar, Chad (Winter)
-
COMP 409 Concurrent Programming (3 credits)
Overview
Computer Science (Sci) : Characteristics and utility of concurrent programs; formal methods for specification, verification and development of concurrent programs; communications, synchronization, resource allocation and management, coherency and integrity.
Terms: Winter 2025
Instructors: Verbrugge, Clark (Winter)
-
COMP 421 Database Systems (3 credits)
Overview
Computer Science (Sci) : Database Design: conceptual design of databases (e.g., entity-relationship model), relational data model, functional dependencies. Database Manipulation: relational algebra, SQL, database application programming, triggers, access control. Database Implementation: transactions, concurrency control, recovery, query execution and query optimization.
Terms: Winter 2025
Instructors: Kemme, Bettina; Elsaadawy, Mona (Winter)
-
COMP 520 Compiler Design (4 credits)
Overview
Computer Science (Sci) : The structure of a compiler. Lexical analysis. Parsing techniques. Syntax directed translation. Run-time implementation of various programming language constructs. Introduction to code generation for an idealized machine. Students will implement parts of a compiler.
Terms: Winter 2025
Instructors: Dubach, Christophe (Winter)
-
COMP 525 Formal Verification (3 credits)
Overview
Computer Science (Sci) : Propositional logic - syntax and semantics, temporal logic, other modal logics, model checking, symbolic model checking, binary decision diagrams, other approaches to formal verification.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
-
COMP 529 Software Architecture (4 credits)
Overview
Computer Science (Sci) : Development, analysis, and maintenance of software architectures, with special focus on modular decomposition and reverse engineering.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
4 hours
Prerequisite: COMP 303.
-
COMP 533 Model-Driven Software Development (3 credits)
Overview
Computer Science (Sci) : Model-driven software development; requirements engineering based on use cases and scenarios; object-oriented modelling using UML and OCL to establish complete and precise analysis and design documents; mapping to Java. Introduction to meta-modelling and model transformations, use of modelling tools.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
-
COMP 535 Computer Networks 1 (4 credits)
Overview
Computer Science (Sci) : Fundamental design principles, elements, and protocols of computer networks, focusing on the current Internet. Topics include: layered architecture, direct link networks, switching and forwarding, bridge routing, congestion control, end-to-end protocols application of DNS, HTTP, P2P, fair queuing, performance modeling and analysis.
Terms: Winter 2025
Instructors: Elsaadawy, Mona (Winter)
-
ECSE 326 Software Requirements Engineering (3 credits)
Overview
Electrical Engineering : Techniques for eliciting requirements; languages and models for specification of requirements; analysis and validation techniques, including feature-based, goal-based, and scenario-based analysis; quality requirements; requirements traceability and management; handling evolution of requirements; requirements documentation standards; requirements in the context of system engineering; integration of requirements engineering into software engineering processes.
Terms: Fall 2024
Instructors: Mussbacher, Gunter (Fall)
- ECSE 437 Software Delivery (3 credits)
-
ECSE 539 Advanced Software Language Engineering (4 credits)
Overview
Electrical Engineering : Practical and theoretical knowledge for developing software languages and models; foundations for model-based software development; topics include principles of model-driven engineering; concern-driven development; intentional, structural, and behavioral models as well as configuration models; constraints; language engineering; domain-specific languages; metamodelling; model transformations; models of computation; model analyses; and modeling tools.
Terms: Winter 2025
Instructors: Mussbacher, Gunter (Winter)
Or any COMP courses at the 300 level or above (excluding COMP 364 and COMP 396.)