Program Requirements
Minor Adviser: Students interested in this Minor should see Liette Chin, Undergraduate Program Coordinator, in the School of Computer Science (Lorne Trottier Building, Room 2060) to obtain the appropriate forms, and should see both the Minor Adviser in Computer Science and their department adviser for approval of their course selection. Forms must be submitted and approved before the end of the Course Change (drop/add) period of the student's final term.
Note: This Minor is open to B.Eng., B.S.E., and B.Sc.(Arch.) students in Engineering.
Engineering students may obtain the Minor in Computer Science as part of their B.Eng., B.S.E., or B.Sc.(Arch.) degree by completing the 24 credits of courses passed with a grade of C or better. In general, some complementary courses within B.Eng. and B.S.E. programs may be used to satisfy some of these requirements, but the Minor will require at least 12 extra credits from Computer Science (COMP) courses beyond those needed for the B.Eng. or B.S.E. degree. Students should consult their departments about the use of complementaries, and credits that can be double counted.
Note: COMP 202 and COMP 208 (compulsory for some Engineering students) do not form part of the Minor in Computer Science.
For more information, see the School of Computer Science website: .
Required Courses
6 credits
-
COMP 206 Introduction to Software Systems (3 credits)
Overview
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2015, Winter 2016
Instructors: Meger, David; Dudek, Gregory L (Fall) Vybihal, Joseph P (Winter)
-
COMP 250 Introduction to Computer Science (3 credits)
Overview
Computer Science (Sci) : An introduction to the design of computer algorithms, including basic data structures, analysis of algorithms, and establishing correctness of programs. Overview of topics in computer science.
Terms: Fall 2015, Winter 2016
Instructors: Blanchette, Mathieu; Waldispuhl, Jérôme (Fall) Crepeau, Claude (Winter)
Complementary Courses
18 credits
3 credits from the following:
-
COMP 302 Programming Languages and Paradigms (3 credits)
Overview
Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.
Terms: Fall 2015, Winter 2016
Instructors: Pientka, Brigitte (Fall) Panangaden, Prakash (Winter)
3 hours
Prerequisite: COMP 250
-
COMP 303 Software Development (3 credits)
Overview
Computer Science (Sci) : Principles, mechanisms, techniques, and tools for object-oriented software development: encapsulation, design patterns, unit testing, etc.
Terms: Fall 2015, Winter 2016
Instructors: Vybihal, Joseph P (Fall) Robillard, Martin (Winter)
3 credits from the following:
-
COMP 273 Introduction to Computer Systems (3 credits)
Overview
Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.
Terms: Fall 2015, Winter 2016
Instructors: Kry, Paul (Fall) Langer, Michael (Winter)
3 hours
Corequisite: COMP 206.
-
ECSE 221 Introduction to Computer Engineering (3 credits)
Overview
Electrical Engineering : Data representation in digital computers. Boolean algebra. Basic combinational circuits; their analysis and synthesis. Elements of sequential circuits: latches, flip-flops, counters and memory circuits. Computer structure, central processing unit, machine language. Assemblers and assembler language.
Terms: Fall 2015, Winter 2016
Instructors: Davis, Donald Peter (Fall) Davis, Donald Peter (Winter)
(3-2-4)
Prerequisite: COMP 202
Tutorials assigned by instructor.
3-4 credits from the following:
-
CIVE 320 Numerical Methods (4 credits)
Overview
Civil Engineering : Numerical procedures applicable to civil engineering problems: integration, differentiation, solution of initial-value problems, solving linear and non-linear systems of equations, boundary-value problems for ordinary-differential equations, and for partial-differential equations.
Terms: Fall 2015
Instructors: Lignos, Dimitrios (Fall)
-
COMP 350 Numerical Computing (3 credits)
Overview
Computer Science (Sci) : Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Least-squares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations.
Terms: Fall 2015
Instructors: Chang, Xiao-Wen (Fall)
-
ECSE 443 Introduction to Numerical Methods in Electrical Engineering (3 credits)
Overview
Electrical Engineering : Symbolic vs. numerical computation. Number representation and numerical error; curve fitting and interpolation; numerical differentiation and integration; solutions of systems of linear equations and nonlinear equations; solutions of ordinary and partial differential equations; optimization. Applications in electrical engineering analysis and design. Evaluation of numerical software packages.
Terms: Winter 2016
Instructors: McFee, Steve J (Winter)
-
MATH 317 Numerical Analysis (3 credits)
Overview
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2015
Instructors: Wan, Andy (Fall)
-
MECH 309 Numerical Methods in Mechanical Engineering (3 credits)
Overview
Mechanical Engineering : Numerical techniques for problems commonly encountered in Mechanical Engineering are presented. Chebyshev interpolation, quadrature, roots of equations in one or more variables, matrices, curve fitting, splines and ordinary differential equations. The emphasis is on the analysis and understanding of the problem rather than the details of the actual numerical program.
Terms: Winter 2016
Instructors: Legrand, Mathias (Winter)
0-3 credits from the following:
-
COMP 251 Algorithms and Data Structures (3 credits)
Overview
Computer Science (Sci) : Introduction to algorithm design and analysis. Graph algorithms, greedy algorithms, data structures, dynamic programming, maximum flows.
Terms: Fall 2015, Winter 2016
Instructors: Crepeau, Claude (Fall) Vetta, Adrian Roshan (Winter)
6-9 credits chosen from other Computer Science courses at the 300 level or higher.
Notes:
A. COMP 208 may be taken before COMP 250; however, it cannot be taken for credit in the same term or afterward.
B. COMP 396 (Undergraduate Research Project) cannot be taken for credit toward this Minor.
Courses that make considerable use of computing from other departments may also be selected, with the approval of the School of Computer Science. Students should consult with their advisers about counting specific courses.