Program Requirements
Students in this concentration take five courses in the area of aeronautical engineering. All courses must be passed with a grade of C or better.
Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the ƽÌØÎå²»ÖÐ Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.
Required Courses
6 credits
-
MECH 532 Aircraft Performance, Stability and Control (3 credits)
Overview
Mechanical Engineering : Aircraft performance criteria such as range, endurance, rate of climb, maximum ceiling for steady and accelerated flight. Landing and take-off distances. Static and dynamic stability in the longitudinal (stick-fixed and stick-free) and coupled lateral and directional modes. Control response for all three modes.
Terms: Winter 2016
Instructors: Nahon, Meyer (Winter)
-
MECH 533 Subsonic Aerodynamics (3 credits)
Overview
Mechanical Engineering : Kinematics: equations of motion; vorticity and circulation, conformal mapping and flow round simple bodies. Two-dimensional flow round aerofoils. Three-dimensional flows; high and low aspect-ratio wings; airscrews. Wind tunnel interference. Similarity rules for subsonic irrotational flows.
Terms: Fall 2015
Instructors: Cortelezzi, Luca (Fall)
(3-1-5)
Prerequisite (Undergraduate): MECH 331
Complementary Courses
9 credits
3-6 credits from the following:
-
MECH 535 Turbomachinery and Propulsion (3 credits)
Overview
Mechanical Engineering : Introduction to propulsion: turboprops, turbofans and turbojets. Review of thermodynamic cycles. Euler turbine equation. Velocity triangles. Axial-flow compressors and pumps. Centrifugal compressors and pumps. Axial-flow turbines. Loss mechanisms. Dimensional analysis of turbomachines. Performance maps. 3-D effects. Introduction to numerical methods in turbomachines. Prediction of performance of gas turbines.
Terms: Fall 2015
Instructors: Habashi, Wagdi George (Fall)
-
MECH 536 Aircraft Structures (3 credits)
Overview
Mechanical Engineering : Aircraft structural components and loads. Bending, shear and torsion of thin-walled open and closed beams. Structural idealization. Wing spars and box beams. Wings bending, torsion and shear, tapered wings, deflection, cut-outs. Fuselage frames and wing ribs, principle of stiffener/web construction. Analysis of riveted, bolted and adhesive joints. Sandwich structures analysis.
Terms: Winter 2016
Instructors: Fayazbakhsh, Kazem (Winter)
3-6 credits from the following:
-
MECH 537 High-Speed Aerodynamics (3 credits)
Overview
Mechanical Engineering : Equations of compressible flows. Planar and conical shock waves. Expansion and shock wave interference; shock tubes. Method of characteristics. Supersonic nozzle design. Aerofoil theory in high subsonic, supersonic and hypersonic flows. Conical flows. Yawed, delta and polygonal wings; rolling and pitching rotations. Wing-body systems. Elements of transonic flows.
Terms: Fall 2015
Instructors: Mateescu, Dan (Fall)
(3-0-6)
Pre/Corequisite (Undergraduate): MECH 533
-
MECH 538 Unsteady Aerodynamics (3 credits)
Overview
Mechanical Engineering : Fundamental equations of unsteady compressible flows in fixed or moving reference frames. Unsteady flows past bodies in translation and having oscillatory motions. Oscillations of cylindrical pipes or shells subjected to internal flows. Vortex theory of oscillating aerofoils in incompressible flows. Theodorsen's method. Unsteady compressible flow past oscillating aerofoils.
Terms: This course is not scheduled for the 2015-2016 academic year.
Instructors: There are no professors associated with this course for the 2015-2016 academic year.
(3-0-6)
Prerequisite (Undergraduate): MECH 533
-
MECH 539 Computational Aerodynamics (3 credits)
Overview
Mechanical Engineering : Fundamental equations. Basic flow singularities. Boundary element methods. Source, doublet and vortex panel methods for 2D and 3D incompressible and compressible flows. Method of characteristics. Euler equations for inviscid rotational flows. Finite-difference and finite-volume methods. Explicit and implicit time-integration methods. Quasi 1D solutions. Nozzle and confined aerofoil applications.
Terms: Winter 2016
Instructors: Nadarajah, Sivakumaran (Winter)
-
MECH 565 Fluid Flow and Heat Transfer Equipment (3 credits)
Overview
Mechanical Engineering : Pipes and piping systems, pumps, and valves. Fans and building air distribution systems. Basic thermal design methods for fins and heat exchangers. Thermal design of shell-and-tube and compact heat exchangers.
Terms: Winter 2016
Instructors: Baliga, Bantwal (Winter)
-
MECH 566 Fluid-Structure Interactions (3 credits)
Overview
Mechanical Engineering : Pipes and cylindrical shells containing flow: fundamentals and applications in ocean mining, Coriolis mass-flow meters, heat exchangers, nuclear reactors and aircraft engines; chaos. Cylinders in axial flow and in cross-flow; vortex-shedding and galloping. Cylinder arrays in cross-flow; fluidelastic instabilities. Ovalling of chimneys.
Terms: Winter 2016
Instructors: Paidoussis, Michael P (Winter)