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Instructions

� Answer only two questions out of Section P. If you answer more than two questions,
then only the FIRST TWO questions will be marked.

� Answer only four questions out of Section S. If you answer more than four
questions, then only the FIRST FOUR questions will be marked.
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This exam comprises the cover page and four pages of questions.
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Section P
Answer only two questions out of P1–P3

P1.

(a) State Fubini's theorem. (5 marks)

(b) Show that if X and Y are random variables with joint probability density function
f X;Y : R2 Ñ r 0; 8q , then the function g de�ned by

gpxq �
»

R
f px; yqdy

is a probability density function for X . Hint. Recall the change of measure
formula: if X has law � then for any bounded measurable function f : R Ñ R,
Epf pX qq �

³
f pxqd� . (8 marks)

(c) Show that if f and g are two densities for X then the set t x : f pxq � gpxquhas
Lebesgue measure zero. (7 marks)

P2. In this question pX i ; i ¥ 1qis an arbitrary sequence of real random variables.

(a) What does it mean for X i to converge in distribution to a random variable X as
i Ñ 8 ? (5 marks)

(b) Show that there exist positive constants a1; a2; : : : such that anX n converges in
distribution to 0. (5 marks)

(c) Let X 1; X 2; : : : be identically distributed random variables with �nite second
moment. Show that for all � ¡ 0, nPr|X 1| ¥ �

?
ns Ñ 0. (5 marks)

(d) Let X 1; X 2; : : : be identically distributed random variables with �nite second
moment. Show that n� 1{2 max1¤ k¤ n(a)P3 11.9552 Tf 9.472 -34.504 Td [((a))-490(What)-350Sup-45 ¤,
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Section S
Answer only four questions out of S1–S6

S1. Consider a Dirichlet distributed random vector pX 1; X 2; X 3q with parameters
� 1; � 2; � 3 ¡ 0, that is, X 3 � 1 � X 1 � X 2 and the density of pX 1; X 2qis

f px1; x2q �
� p� 1 � � 2 � � 3q
� p� 1q� p� 2q� p� 3q

x � 1 � 1
1 x � 2 � 1

2 p1 � x1 � x2q� 3 � 1

for all x1; x2 ¡ 0 such that x1 � x2   1.

(a) What can you say about the density of pX 1; X 2; X 3q? (3 marks)

(b) Determine the marginal distributions of X i , i � 1; : : : ; 3. (6 marks)

(c) Compute the correlation between X 1 and X 2 � X 3. Justify every step you make.

(5 marks)

(d) Suppose that Y1 � Betap� 1; � 2 � � 3qand Y2 � Betap� 2; � 3qare independent. Prove
that

pX 1; X 2; X 3q d� p Y1; Y2p1 � Y1q; p1 � Y1qp1 � Y2qq

where d� denotes equality in distribution. Hint: show �rst

that pX 1; X 2q d� p Y1; Y2p1 � Y1qq. (6 marks)

S2. Consider the inverse Gaussian distribution with parameters � ¡ 0 and � ¡ 0. Its
density is given by

f px; �; � q �

?
�

?
2�x 3

exp
"

�
� px � � q2

2� 2x

*
; x ¡ 0:

(a) Show that the inverse Gaussian family of distributions is an exponential family.
Identify the canonical parameters and determine the canonical parameter space.

(7 marks)

(b) Suppose that X is an inverse Gaussian random variable. Compute the correlation
between X and 1{X . (7 marks)

(c) Show that the correlation of any tw3 Td [((c))]TJ/F4292  Tf 37 11.11.9552 Tf 326.547 0 292�
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S3. Suppose that �; � ¡ 0 and pX 1; P1q; : : : ; pX k ; Pkq are independent random vectors
such that

X i |Pi � Binomialpni ; Pi q; i � 1; : : : ; k;

Pi � Betap�; � q:

Denote the total number of successes byY �
° k

i � 1 X i .

(a) Compute the expectation and variance of Y. (6 marks)

(b) Determine the distribution of Y when n1 � � � � � nk � 1. (7 marks)

(c) Suppose that W and Z are random variables with �nite expectations. Determine a
function h such that W � hpZqis orthogonal to gpZq, viz.

E
�  

W � hpZq
(
gpZq

�
� 0;

for any measurable function g such that Et gpZquis �nite. Show your work and justify
every step you make. (7 marks)

S4. Find a nontrivial set of suf�cient statistics in each of the following cases:

(a) Random variables X jk pj � 1; � � � ; m ; k � 1; � � � r qhave the form X jk � � � � j � " jk ,
where the � j 's and the " jk 's are independently normally distributed with zero
means and variances respectively � 2

b and � 2
w . The unknown parameters are thus

p�; � 2
b; � 2

wq. (10 marks)

(b) Independent binary random variables Y1; � � � ; Yn are such that the probability of the
value one depends on an explanatory variable x, which takes corresponding values
x1; � � � ; xn , through the model

log
� PpYj � 1q

PpYj � 0q

�
� 
 � �x;

where 
 and � are scalar-valued constants. (10 marks)



Section S Page 5

S5. If we wish to study the distribution of X , the number of albino children (or children
with a rare anomaly) in families with proneness to produce such children, a convenient
sampling method is �rst to discover an albino child and through it obtain the albino
count X w of the family to which it belongs. If the probability of detecting an albino is
� , then the probability that a family with k albinos is recorded is wpkq � 1 � p 1 � � qk ,
assuming the usual independence of Bernoulli trials. In such a case

pX w pkq � PpX w � kq �
wpkqPpX � kq

ErwpX qs
; k � 0; 1; 2; � � �

(a) SupposeX has the Pascal Distribution, that is

PpX � kq �
� k

p1 � � qk� 1
; k � 0; 1; 2; � � �

Find EpX qand show that

lim
� Ñ 0

wpkq
ErwpX qs

�
k

EpX q
:

State clearly the assumptions you need to establish this result. (7 marks)

(b) Suppose � is small enough, such that the result of Part (b) is applicable. Is this
probability distribution a member of Exponential family? Let X w

1 ; � � � ; X w
n be a

sample of size from pX w . Find a complete suf�cient statistic for � . (7 marks)

(c) Using the asymptotic distribution of � �nd a 95% con�dence interval for � .

(6 marks)

S6. Let X i
iid� N p�; 1q, i � 1; 2; � � � ; n. Consider the sequence

� n �

#
X n ; if |X n | ¥ 1{n1{4;

aX n ; if |X n | ¤ 1{n1{4:

Show that
?

np� n � � q LÑ N p0; � p� qq, where � p� q � 1 if � � 0 and � p� q � a2 if � � 0. Is � p� q
greater than or equal to the information bound? ( Hint: condition on |X n | ).

(20 marks)


