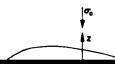

Times 4 Canaptined displacements of the sixed elliptical disc anabox

can be obtained in the form


Thus (19) can be written in the form

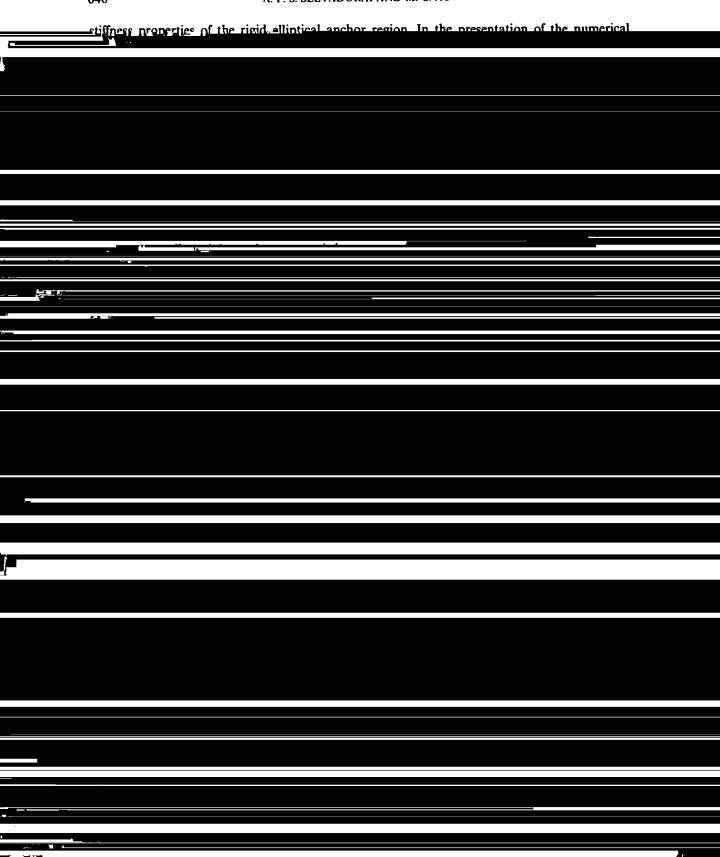
$$\{\mathbf{F}\} = -\begin{bmatrix} c_{11} & c_{12} & 0 & 0 & 0 & 0 \\ c_{21} & c_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & c_{33} & c_{34} & 0 & 0 \\ 0 & 0 & c_{43} & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{66} \end{bmatrix} \begin{bmatrix} v_1 \\ \omega_2 \\ v_2 \\ \omega_1 \\ v_3 \\ \omega_3 \end{bmatrix}$$
 (22)

This formally completes the houndary element englished the machine of a rigid elliptical disc

(a) upper bound analysis

	Rounds for the axial elastic stiffness	Considering the techniques pro	cented in the preceding
k			
1			
-			
	,	# >	
	41.	10-	
		15-	
	At-		

where C is an arbitrary constant and $e_0^2 = (a^2 - b^2)/a^2$. The variable u is related to the ellipsoidal co-ordinate ξ by


$$\xi^2 = a^2(sn^{-2}u - 1) \tag{53}$$

$$E(u) = \int_0^u \mathrm{d}n^2 t \, \mathrm{d}t \tag{54}$$

The quantities snu, dnu, etc., represent the Jacobian elliptic functions¹³ which have real and imaginary roots 4K and 2iK, respectively, corresponding to the moduli e_0 and $e_0^1 = b/a$. It may also be noted that $E(e_0)$ is the complete elliptic integral of the second kind. Considering the harmonic that $E(e_0)$ and $E(e_0)$ is in possible to determine the constant $E(e_0)$ and $E(e_0)$ and $E(e_0)$ it is possible to determine the constant $E(e_0)$ and $E(e_0)$ it is possible to determine the constant $E(e_0)$ and $E(e_0)$ it is possible to determine the constant $E(e_0)$

	stiffness of the elliptical rigid anchor embedded at the bi-material interface is identical to the				
		1100			
· · · · · · · · · · · · · · · · · · ·					
₹is.					
i.					
———					

	anningimate solution (67) by vietue of the imposed constraint on a (cited by (63)) Again the
L	
1	
<u> </u>	
<u> </u>	

variables:

$$\bar{F}_z = \frac{F_z}{4\pi a \, \Delta_z (G_1 + G_2) / K(e_0)} \tag{70a}$$

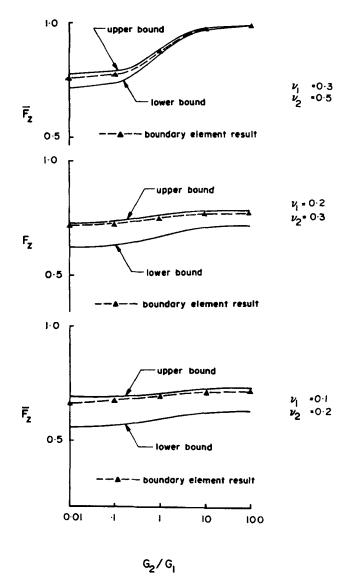
$$F_{x} = \frac{F_{x}}{4\pi a \Delta_{x} (G_{1} + G_{2}) e_{0}^{2} / 3 [K(e_{0}) - E(e_{0})]}$$
(70b)

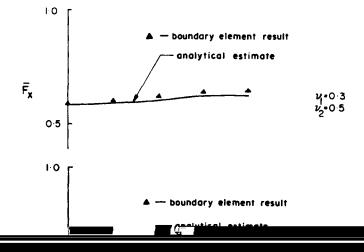
$$\bar{F}_{x}^{*} = \frac{F_{x}}{4\pi a^{2} \Omega_{v}^{*} (G_{1} + G_{2}) e_{0}^{2} / 3[K(e_{0}) - E(e_{0})]}$$
(70c)

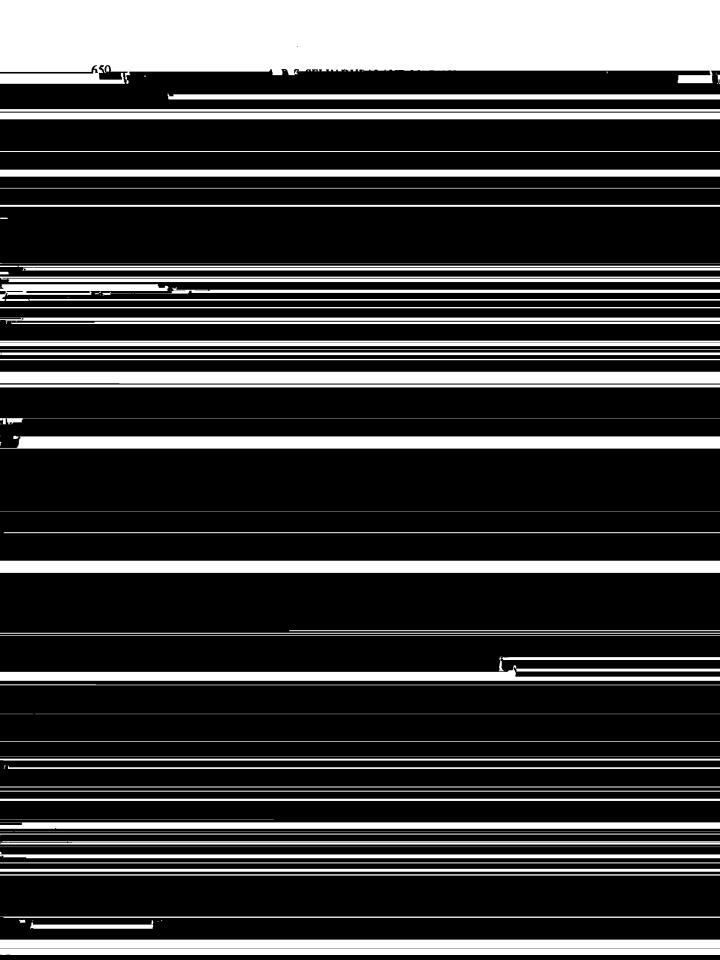
$$\bar{M}_{y} = \frac{M_{y}}{4\pi a^{3} \Omega_{y} (G_{1} + G_{2}) e_{0}^{2} / 3[K(e_{0}) - E(e_{0})]}$$
(70d)

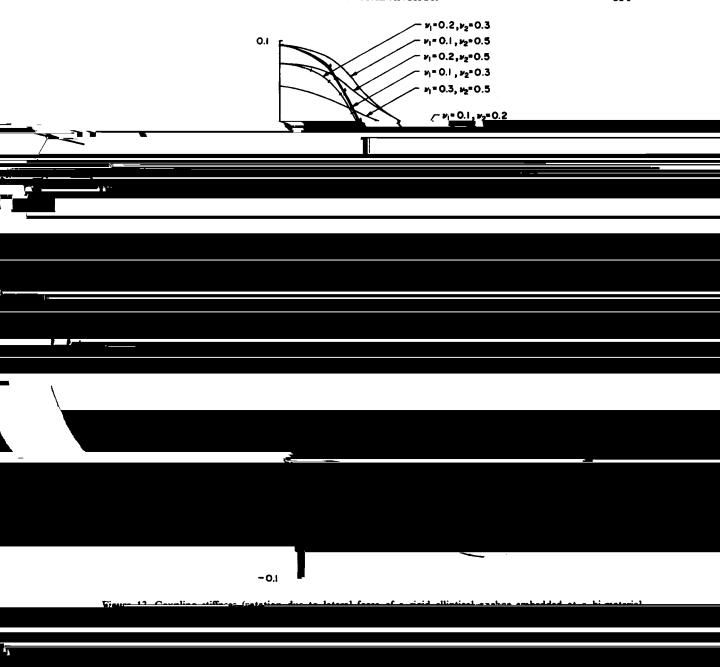
$$\overline{M}_z = \frac{M_z}{4\pi a^3 \Omega_z (G_1 + G_2) / K(e_0)}$$
 (70e)

where K(e,) and E(e) are complete elliptic integrals of the first and second kind. The reciprocal




Figure 10. Avial atiffeess of a sixid allimitical analyse ambedded at a bi-material scalaring inc. 6


the bounds converge to a single result which agrees quite accurately with the boundary element estimate. Similar conclusions apply, in general, for the results for the non-dimensional rotational stiffness \overline{M}_y . Since the bounds for the axial stiffness are identical to the bounds for the rotational stiffness, the following relationship may be used to derive $M_y/\Omega_y a^2$ from F_z/Δ_z :


$$\frac{M_{y}}{\Omega_{y}a^{2}} = \frac{F_{z}K(e_{0})e_{0}^{2}}{3\Delta_{z}\{K(e_{0}) - E(e_{0})\}}$$
(71)

Relationship (71) applies only for the bounding estimates.

Figure 11 illustrates the boundary element results for the non-dimensional translational stiffness

ACKNOWLEDGEMENTS

	The authors would like to thank the referees for their very valuable comments which led to	
<u>, </u>		