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elastic halfspace, given in terms of integrals of the Lipschitz…Hankel type, that satis“es in advance the
boundary condition of zero traction on the free surface and the decay of displacements in the far “eld.
Explicit equations for post-processing the results at internal points are provided, as well as adequate
numerical schemes to evaluate the boundary integrals arising in the method. This formulation can be easily
implemented in existing BE computational codes for axisymmetric fullspace problems, requiring only a few
modi“cations. Numerical results are provided to validate the proposed formulation.
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1. Introduction

The axisymmetric formulation in classical elasticity is useful
for the analysis of problems in geomechanics [1,2], as well as
contact problems for cylinders, spheres and circular plates [3…8].
Other applications involve the study of fracture mechanics phe-
nomena and inclusions [5 ,9…11].

In particular, the BE method is advantageous for axisymmetric
problems, since it reduces the analysis of the three-dimensional
domain to a one-dimensional mesh discretization requiring only
the evaluation of linear integrals. However, the fundamental
solutions involved are more complex, requiring special considera-
tions on their manipulation and integration to correctly evaluate
the in”uence coef“cients arising in the boundary integral equa-
tions. Extensive surveys on the existing axisymmetric fundamen-
tal solutions are given by Wang and Liao [12 ,13], Wang et al. [14]
and Wideberg and Benitez [15] .

The BE method for axisymmetric elasticity was “rst formu-
lated by Cruse et al. [16] , using the fullspace fundamental
solution derived by Kermanidis [17] . Several contributions to
the formulation of the axisymmetric problem may be cited, such
as the expansion of non-symmetric boundary conditions by
Fourier series suggested by Mayr [18] and Rizzo and Shippy

[19 ,20





the number of unknown functions can be reduced from 12 to 6.
These functions can be determined using (i) the compatibility
conditions of displacements at the interface
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where GE and GE are portions of the circumference of radius E, as
depicted in Fig. 4.



za 0. On the other hand, for z¼0 the traction term tnd
ij vanishes

and only und
ij presents singularity.

In this section, the integration cases identi“ed for Gt
ia and bH

t

ia
are grouped according to the position of P ðx,z0Þin relation to the
part of the boundary along which the integration is carried out as
well as to the axis of symmetry. The numerical schemes employed
in this work to evaluate regular integrals, weakly singular integrals
of logarithmic terms and the “nite part of singular integrals of
order 1 =r are brie”y presented in Appendix C.

4.1. Case 1:Pðx,z0Þ=2Gt

If the point P ðx,z0Þ does not belong to the portion of the
boundary being integrated, as illustrated in Fig. 5, then r 4 0
and accordingly both Gt

ia and bH
t

ia expressed in Eqs. (56) and (57)
are regular and can be evaluated by the Gauss…Legendre quad-
rature rule [65] . For each portion of the boundary, these integrals
can be rewritten in terms of the natural coordinate ZA ½�1; 1� as
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Gauss…Legendre quadrature rule while the second integral has
logarithmic singularity and should be evaluated by the weighted
logarithmic Gauss quadrature rule [65] . Although the complete
elliptic integral E(m) presents no singularity, its nonsingular
approximation also includes logarithmic terms which are also
isolated to enhance numerical convergence.

Owing to Eqs. (60)…(63), bH
t

ia as given by Eq. (57) also includes
logarithmic terms in tnf

Kij
KðmÞand tnf

Eij
E2ðmÞln m. Thus, their inte-

gration can be carried out by means of a regular integral and a
weakly logarithmic singular integral, similar to the procedure
proposed for Gt

ia. On the other hand, the integral of t nf
Eij

E1ðmÞexists
only in terms of the “nite part, to be numerically evaluated by the
scheme proposed by Dumont and Souza [67] for singular integrals
in terms of order 1 =r over a curved boundary. This procedure
employs the Gauss…Legendre quadrature and an additional cor-
rection term, as summarized in Appendix C. Hence, bH
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given by
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where Z0 is the value of Z at the singularity point (which is either
� 1 or 1) and Zg

m and wm
g are the abscissae and weights of the

Gauss…Legendre quadrature scheme for ng points. In the above

equation, the limit of t nf
Eij

r NaðZÞrðZÞfor Z- n0 is dif“cult to obtain

analytically and has been evaluated numerically by extrapolation.
Alternatively, the elements of the matrix bH

t

ia that require the
evaluation of singular integrals can be obtained indirectly by



The complete elliptic integrals can be approximated as in Eqs.
(62) and (63). Similar to the procedure presented for Case 2.1, one
arrives at
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is the Jacobian transformation between the global and natural
coordinate systems. The coef“cients Zg

m and wm
g are the abscissas

and weights of the Gauss…Legendre quadrature rule for ng points
within the interval ð� 1; 1Þ, which suf“ce to exactly evaluate the
integral of a polynomial of order 2 ng� 1.

C.2. Weakly singular integral of logarithmic terms

Let f ðr,zÞbe a regular function and



where m is given by Eq. (C.8) and

E1ðmÞ ¼1þ a1m þ � � � þ a4m4

E2ðmÞ ¼b1m þ � � � þ b4m4 ðC:19Þ

are the polynomials whose coef“cients are given by

a1 ¼ 0:44325141463 , b1 ¼ 0:24998368310

a2 ¼ 0:06260601220 , b2 ¼ 0:09200180037

a3 ¼ 0:04757383546 , b3 ¼ 0:04069697526

a4 ¼ 0:01736506451 , b4 ¼ 0:00526449639 ðC:20Þ

The polynomial approximation of E(m) presents no singularity,
since E2ðmÞ has no free coef“cients, according to Eq. (C.18).
However, the presence of ln m causes the integrand of Eq.
(C.17) to be non-analytical, which requires a special numerical
treatment.

In a manner similar to that used in the previous section, the
following expression can be obtained for the numerical evalua-
tion of the weakly singular integral given by Eq. (C.17)
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for ~Z given by Eq. (C.6).

C.3. Cauchy principal value of the singular integral of order 1=r

Let f ðr,zÞbe a regular function and r ðr,zÞthe distance between
the points P ðx,z0Þand Qðr,zÞon the boundary Gðr,zÞ. The strongly
singular integral
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has to be evaluated for the case r ð� 1Þ ¼0 or r ð1Þ ¼0. This integral
may be obtained as a sum of a Cauchy principal value and a
discontinuous term as
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The evaluation of the discontinuous term c of the strongly
singular integrals appearing in the boundary element formula-
tions is addressed in Section 3.2.

The Cauchy principal value is best evaluated in terms of two
“nite-part integrals, denoted by �R, for the boundary segments
adjacent to the singularity point r ðr,zÞ ¼0.

In what follows, the integration scheme proposed by Dumont
and Souza [67] is used. Using the notation of Eq. (C.6), the regular
function can be expanded as a Taylor series to obtain the
following normalized integral of Eq. (C.23) over the curved
boundary G
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The resulting quadrature rule for evaluating Cauchy•s principal
value of the strongly singular integral of (C.23) is given by
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where

½r ðZÞ�Z ¼ Z0 ¼ ½JðZÞ�Z ¼ Z0 ðC:27Þ

The above scheme, that employs the Gauss…Legendre quadrature
rule and an additional correction term, evaluates exactly this
integral for a polynomial function of order 2 ng. Other numerical
integration schemes for the strongly singular integral can be used
[72 ,73].
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