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elastic halfspace, given in terms of integrals of the Lipschitz...Hankel type, that satis“es in advance the

boundary condition of zero traction on the free surface and the decay of displacements in the far “eld.

Explicit equations for post-processing the results at internal points are provided, as well as adequate

numerical schemes to evaluate the boundary integrals  arising in the method. This formulation can be easily
_implemented in existing BE computational codes for axisymmetric fullspace problems, requiring only a few

modi“cations. Numerical results are provided to validate the proposed formulation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction [19,20

The axisymmetric formulation in classical elasticity is useful
for the analysis of problems in geomechanics [1,2], as well as
contact problems for cylinders, spheres and circular plates  [3..8].
Other applications involve the study of fracture mechanics phe-
nomena and inclusions [5,9..11].

In particular, the BE method is advantageous for axisymmetric
problems, since it reduces the analysis of the three-dimensional
domain to a one-dimensional mesh discretization requiring only
the evaluation of linear integrals. However, the fundamental
solutions involved are more complex, requiring special considera-
tions on their manipulation and integration to correctly evaluate
the in"uence coefcients arising in the boundary integral equa-
tions. Extensive surveys on the existing axisymmetric fundamen-
tal solutions are given by Wang and Liao [12,13], Wang et al. [14]
and Wideberg and Benitez [15].

The BE method for axisymmetric elasticity was “rst formu-
lated by Cruse et al. [16], using the fullspace fundamental
solution derived by Kermanidis [17]. Several contributions to
the formulation of the axisymmetric problem may be cited, such
as the expansion of non-symmetric boundary conditions by
Fourier series suggested by Mayr [18] and Rizzo and Shippy






the number of unknown functions can be reduced from 12 to 6.
These functions can be determined using (i) the compatibility
conditions of displacements at the interface
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where Ggand Ggare portions of the circumference of radius E as
depicted in Fig. 4.



za 0. On the other hand, for z¥%0 the traction term ti’j‘d vanishes

and only uﬁd presents singularity. .
In this section, the integration cases identi‘ed for G, and hia

are grouped according to the position of P &,z%in relation to the

part of the boundary along which the integration is carried out as

well as to the axis of symmetry. The numerical schemes employed

in this work to evaluate regular integrals, weakly singular integrals

of logarithmic terms and the “nite part of singular integrals of

order 1=r are brie"y presented in Appendix C.

4.1. Case 1PX,z%2G

If the point P &,z% does not belong to the portion of the
boundary being integrated, as illustrated in Fig. 5, then r4 0
and accordingly both (.}‘a and h:a expressed in Egs. (56) and (57)
are regular and can be evaluated by the Gauss...Legendre quad-
rature rule [65]. For each portion of the boundary, these integrals
can be rewritten in terms of the natural coordinate ZA%1;1 as
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Gauss...Legendre quadrature rule while the second integral has
logarithmic singularity and should be evaluated by the weighted
logarithmic Gauss quadrature rule [65]. Although the complete
elliptic integral E(m) presents no singularity, its nonsingular
approximation also includes logarithmic terms which are also
isolated to enhance numerical convergence.

Owing to Egs. (60)...(63), h,a as given by Eq. (57) also includes
logarithmic terms in tnf Kémpband t”f E,dmBn m. Thus, their inte-
gration can be carried out by means of a regular integral and a
weakly logarithmic singular integral, similar to the procedure
proposed for Gi,. On the other hand, the integral of tg E, dnbexists
only in terms of the “nite part, to be numerically evaluated by the
scheme proposed by Dumont and Souza [67] for singular integrals
in terms of order 1 =r over a curved boundary. This procedure
employs the Gauss...Legendre quadrature and an additional cor-
rection term, as summarized in Appendix C. Hence, h:a can be
given by

t 21 ¢
R, va2p ty KipKaln
1

. #
a zzs
am

" #)

bt BpEnE 22 N haaredz
i 4m
Zl

8P ! Kob tEE, In Z N3 EREPIZ
0

(
2P 1 Na&B &Pz, 0 INRB,,, 5

X w
m%llbz'grl

where Zis the value of Zat the singularity point (which is either
1 or 1) and Z2, and wg, are the abscissae and weights of the
Gauss...Legendre quadrature scheme for ng points. In the above
equation, the limit of t'é‘lr Na&lr&bfor Z- nlis dif‘cult to obtain
analytically and has been evaluated numerically bly extrapolation.
Alternatively, the elements of the matrix It!ia that require the
evaluation of singular integrals can be obtained indirectly by
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The complete elliptic integrals can be approximated as in Egs.
(62) and (63). Similar to the procedure presented for Case 2.1, one
arrives at
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where
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dr 2 dz 2
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is the Jacobian transformation between the global and natural
coordinate systems. The coef‘cients Z3, and wg, are the abscissas
and weights of the Gauss...Legendre quadrature rule for ng points
within the interval & 1;1R which suf‘ce to exactly evaluate the
integral of a polynomial of order 2 ng 1.

a2k

C.2. Weakly singular integral of logarithmic terms

Let f&,zPbe a regular function and



where m is given by Eq. (C.8) and
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are the polynomials whose coef‘cients are given by

a; ¥20:44325141463, b, ¥20:24998368310

a ¥20:06260601220, b, ¥20:09200180037

a3 ¥20:04757383546 , b3 ¥.0:04069697526

a4 ¥20:01736506451, b, ¥20:00526449639 ac:20p

The polynomial approximation of E(m) presents no singularity,
since E;dnb has no free coef‘cients, according to Eq. (C.18).
However, the presence of In m causes the integrand of Eq.
(C.17) to be non-analytical, which requires a special numerical
treatment.

In a manner similar to that used in the previous section, the
following expression can be obtained for the numerical evalua-

tion of the weakly singular integral given by Eq. (C.17)
z
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for Z given by Eqg. (C.6).

C.3. Cauchy principal value of the singular integral of order 1=r

Let f&,zPbe a regular function and I &,zbthe distance between
the points P &,z%and Q& ,zPon the boundary G&,zb The strongly
singular integral
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has to be evaluated for the case ré 1b¥0or r &b ¥0. This integral
may be obtained as a sum of a Cauchy principal value and a
discontinuous term as
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The evaluation of the discontinuous term ¢ of the strongly
singular integrals appearing in the boundary element formula-
tions is addressed in Section 3.2.

The Cauchy principal value is bgzst evaluated in terms of two
“nite-part integrals, denoted by , for the boundary segments
adjacent to the singularity point 1 &,zb ¥0.

In what follows, the integration scheme proposed by Dumont
and Souza [67] is used. Using the notation of Eq. (C.6), the regular
function can be expanded as a Taylor series to obtain the
following normalized integral of Eq. (C.23) over the curved

boundary G
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The resulting quadrature rule for evaluating Cauchyes principal
value of the strongly singular integral of (C.23) is given by
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The above scheme, that employs the Gauss...Legendre quadrature
rule and an additional correction term, evaluates exactly this
integral for a polynomial function of order 2 ng. Other numerical
integration schemes for the strongly singular integral can be used
[72,73].
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