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SUMMARY

Conventional modelling of transport problems for porous media usually assumes that the Darcy ”ow
velocities are steady. In certain practical situations, the ”ow velocity can exhibit time-dependency, either
due to the transient character of the ”ow process or time dependency in the boundary conditions associated
with potential ”ow. In this paper, we consider certain one- and three-dimensional problems of the
advective transport of a chemical species in a ”uid-saturated porous region. In particular, the advective
”ow velocity is governed by the piezo-conduction equation that takes into account the compressibilities of
the pore ”uid and the porous skeleton. Time- and/or mesh-re“ning adaptive schemes used in the
computational modelling are developed on the basis of a Fourier analysis, which can lead to accurate and
optimal solutions for the advective transport problem with time- and space-dependent advective ”ow
velocity distributions. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem that deals with the movement of hazardous chemicals and other contaminants
in ”uid-saturated porous media is of considerable importance to geoenvironmental engineering
[1…6]. The assessment of the distribution of the concentration of a chemical or a contaminant
within the porous medium in”uences the environmental decision-making process. It is rarely
possible to conduct large-scale experiments to determine the location of contaminant plumes
within the geosphere. In the event of either an accidental chemical spill or a geological disposal
of the chemical, recourse must be made to a plausible model to establish the spatial and



between the porous medium and the chemical species that is being transported. Purely advective
transport is perhaps the simplest approach to the modelling of the movement of a contaminant
of a chemical species in the porous medium that can provide useful “rst approximations of
engineering value. The absence of both di�usion e�ects and natural attenuation can lead to the
estimation of the location of contaminant plumes with the strongest concentration, which can
then be used to assess the most adverse e�ects.

In the conventional modelling of the advective transport problem it is invariably assumed that



wherex is a position vector, t is time, vðx; tÞis the averaged advective ”ow velocity in the pore
space. The third term on the LHS of (1) is non-zero if the ”uid is considered to be compressible.
The advective ”ow velocity in the porous medium is assumed to be governed by Darcy•s law,
which for an isotropic porous medium can be expressed by

v ¼ � kr f ð



convection term has the adjoint form of the advection term in the equation, which gives rise to
computational schemes that are symmetric [21]. Alternatively, their choice can be based on a
Fourier analysis to ensure that numerical modelling gives rise to an •optimal• solution of the
transient advection equation [22], such as the one in streamline upwind Petrov…Galerkin method
proposed by Hughes and Brooks [17]. The upwind function can also take di�erent values to
generate di�erent stabilized methods, such as the Taylor…Galerkin method [23].

3.2. The modi“ed LS method

Since the LS method can generate a symmetric matrix form for the advection equation, the
method has signi“cant potential for the examination of the non-linear problem. Wendland and
Schmid [21] proposed the 3S scheme (Symmetrical Streamline Stabilization) for the numerical
modelling of the advection-dominated transport problem, in which a parameter was introduced
into the upwind term of the LS scheme to obtain optimal computational performance. This
approach is equivalent to using di�erent perturbation parameters in the weighting functions for
the temporal and spatial terms of the advection equation in the LS method: i.e.
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and therefore this scheme can be referred to as the modi“ed LS (MLS) method. The parameter
a in (6) accounts for the upwind e�ect, which can be determined from a Fourier analysis
to achieve a better numerical performance of the MLS scheme for the advection equation.

4. TIME- AND SPACE-ADAPTIVE PROCEDURES

4.1. Fourier analysis

The mathematical performance of stabilized semi-discrete Eulerian methods for the advection
equation can be demonstrated via a Fourier analysis in the frequency domain by means of the
algorithmic amplitude and the phase velocity of the numerical scheme [24, 25]. Selvadurai and
Dong [26] performed a Fourier analysis of the MLS scheme for the advection equation and
obtained the following analytical expressions for the algorithmic amplitudezh and the relative
phase velocityun=u of the MLS method applicable for the one-dimensional advection equation
with the application of the trapezoidal rule

zh ¼ jzðo Þj ¼
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where zðo Þis the spectral function of the MLS numerical operator for the advection equation
with the application of the trapezoidal rule, Cr ð¼uDt=hÞis the Courant number,u is the one-
dimensional ”ow velocity, h is the length of the piecewise element,o h is dimensionless wave
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the solution is located through an error indicator E(e), based on the “rst derivative of the
solution for each element [27]

EðeÞ ¼
1
2

�
X
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 ! 2

ð10Þ

wherenj is the unit normal to the edgej of the element with the lengthhj and @e is the boundary
of the element. The term in square brackets in (10) represents the jump in the ”ux across the
element edge. The locations (or elements) of the steep front are determined by satisfying
EðeÞ> b and b is a parameter, which can be de“ned by the half of the maximum ofE(e),
i.e. b ¼ 0:5 maxðEðeÞÞ:

In the ensuing sections, the time- and mesh-adaptive procedures will be used in conjunction
with the MLS scheme to examine the advective transport problems associated with one- and
three-dimensional axisymmetric con“gurations where the advective ”ow velocities are both
time- and space-dependent and derived from the transient pressure potential governed by the
piezo-conduction equation (3).

5. A ONE-DIMENSIONAL ADVECTIVE TRANSPORT PROBLEM

5.1. The transport equation with the analytical transient ”ow velocity



From (12), the ”ow velocity in the semi-in“nite porous region is given by
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Therefore, the one-dimensional problem of advective transport in the semi-in“nite porous
region is governed by the following PDE:
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The solution of (15) is subject, respectively, to the following initial and boundary conditions:

Cðx; 0Þ ¼0; x 2 ½0;1Þ ð16aÞ

Cð0; tÞ ¼C0H ðtÞ ð16bÞ

The IBVP de“ned by (15) and (16) is well-posed. In the computational modelling of the





cavity also exhibits symmetry about the planez ¼ 0; attention can be restricted to the
consideration of a quarter-domain where suitable Neumann boundary conditions are imposed
to satisfy requirements of symmetry. The boundary conditions corresponding to a cavity region
with a ¼ 8 m and b ¼ 1 m are shown in Figure 5. The outer boundary is “xed at a radius
Rð¼

��������������
r2 þ z2

p
Þ ¼30 m where a Neumann boundary condition is applied toCðx; tÞin order to

achieve the required regularity condition at in“nity. The Dupuit…Forchheimer measure of
hydraulic conductivity of the porous medium is taken ask ¼ 0:03 m=day: The boundary of the



cavity is subject to a potentialf 0H ðtÞand the far “eld potential is maintained at a zero value as
shown in Figure 5.

6.1. Mesh-re“ning adaptive scheme

The computations presented in Section 5 indicate that the MLS scheme with the chosen values
of a ¼ 3=2 and y ¼ 1=3 can generate an accurate solution for the advection equation when the



such a mesh-adaptive scheme, the mesh at the locations of the steep front of the solution can be
re“ned quantitatively with the Courant number criterion (9) based on the magnitude of the ”ow
velocity. Since the size of the element will be decreased during the mesh re“nement, the
elemental Courant number will be increased. Therefore, in order to avoid high elemental
Courant numbers, the criterionðCrÞie4 0:5 should be used in the mesh-adaptive algorithm, such
that the Courant numbers in the re“ned elements do not exceed unity. In such a mesh-re“ning
approach, only the elements where the high gradient of the solution is encountered need be
re“ned by reducing the dimensions of all the edges or the longest edge of the selected triangles
into half their original length. This mesh-re“ning adaptive scheme will be used in the ensuing
section to develop computational results for the advective transport of a contaminant from the
boundary of an oblate spheroidal cavity, induced by both steady ”ow and unsteady ”ow.

6.2. The advective transport with a steady ”uid ”ow

First, the steady-state problem of the advective transport from the oblate spheroidal cavity in a
non-deformable porous medium is considered (i.e. the pore ”uid is considered to be
incompressible and the porous skeleton is assumed to be non-deformable). In this case, the



located remote from the cavity, due to the small magnitude of the ”ow velocity, which induces
the low Courant number and the large discrepancy between the phase velocity and the ”ow
velocity. If the time step is increased, the numerical oscillations will be introduced into the
solution at the early stages of the transport process (i.e. the steep front is located in the vicinity
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Figure 7. The ”ow velocity pattern in the computational domain containing an oblate cavity.

Figure 8. The analytical solution of the advective transport from an oblate spheroidal
cavity (a=b ¼ 0:125) [10].
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of the cavity) due to the high Courant number resulting from the large magnitude of the ”ow
velocity. In the transport processes where the ”ow “eld exhibits spatial variations of the type
indicated in Figure 7, it is di�cult to choose a constant time step with an almost uniform mesh
(similar to that shown in Figure 5) to ensure that the elemental Courant number is unity over
the entire computational domain. For this reason, adaptive procedures should be used during
the computations to satisfy the Courant number criterion (9) at all times. This conclusion can be
veri“ed through a numerical computation obtained from a time-adaptive scheme.

The application of the time-adaptive procedure is based on the consideration that the
advective ”ow “eld along the steep front of the solution is almost uniformly distributed (see





step of Dt ¼ 1:0 day adaptively increases toDt ¼ 5:5 days at the end of the computation. With
the increase in the time step, the mesh re“nement is performed on a coarser level than that used
in the mesh-adaptive scheme. From this point of view, the combined time- and mesh-adaptive
scheme is computationally more e�cient than the purely mesh-adaptive scheme. However,
because of the use of the coarser re“ned mesh, the numerical solution obtained from the
combined time- and mesh-adaptive scheme is more di�usive than that obtained from the mesh-
adaptive scheme.

Figure 11. Numerical results att ¼ 30 days for the advective transport from the oblate cavity obtained
from the mesh-adaptive CN-MLS scheme withDt ¼ 1:0 days.

Figure 12. Numerical results att ¼ 30 days for the advective transport from the oblate cavity obtained
from the mesh-adaptive MLS scheme witha ¼ 3=2 and y ¼ 1=3:
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6.3. Advective transport from an oblate spheroidal cavity induced by pressure transients

In this section, we consider the advective transport problem where the ”ow velocities are
governed by the piezo-conduction equation, which takes into consideration the compressibilities
of the pore ”uid and the soil skeleton. Attention is focused on the advective transport of a
chemical from an oblate spheroidal cavity located in an extended porous medium where the
boundary of the cavity is simultaneously subjected to pressure and chemical pulses in the form
of Heaviside step function. The material and physical parameters governing hydraulic
conductivity, compressibilities and porosity are kept the same as those used in Section 5.
The mesh-re“ning adaptive as well as the combined time- and mesh-re“ning adaptive
CN-MLS schemes are used to solve the pressure transient-induced advective transport problem.
Figure 14 illustrates the numerical results obtained from the two adaptive schemes. In the
combined time- and mesh-re“ning adaptive scheme, the initial time step commences withDt ¼
1:0 day and increases toDt ¼ 5:5 days at the end of the computation corresponding tot ¼ 30
days. Again, the mesh-adaptive scheme generates a more accurate solution, but the combined
time- and mesh-adaptive scheme is considered to be more e�cient.

6.4. Advective transport from a cylindrical cavity

As a “nal example, we consider the problem of advective transport from a cylindrical cavity
located in an extended porous medium. The chemical is introduced at the boundary of the
borehole and its migration through the porous medium is as a result of a time- and space-
dependent velocity “eld. Figure 15(a) illustrates the axisymmetric computational domain and its
discretization as well as the boundary conditions applicable to the piezo-conduction equation
and the advection equation. Figure 15(b) illustrates the ”ow “eld over the computational
domain corresponding tot ¼ 30 days, which is determined from the piezo-conduction equation
and the potential boundary conditions. The computational results and the re“ned mesh for the
advective transport from the borehole corresponding tot ¼ 30 days, obtained from the

Figure 13. Numerical results att ¼ 30 days for the advective transport from the oblate cavity
obtained from the time- and mesh-adaptive CN-MLS scheme (the initial time stepDt ¼ 1:0

days is increased toDt ¼ 5:5 days).
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The computational results and the re“ned mesh corresponding tot ¼ 30 days, obtained from
the mesh-re“ning CN-MLS scheme withDt ¼ 1:0 day, are shown in Figure 17. A mesh gap can
be clearly seen in the re“ned mesh, which corresponds to an increase of the ”ow velocity caused
by a rise in the potential pulse applied at the boundary of the borehole. This increase of the ”ow
velocity has the e�ect of accelerating the transport process (see e.g. the results shown in Figures
16(a) and 17(a)).

Figure 16. Numerical results for t ¼ 30 days for the advective transport from a borehole with pressure
transient obtained using a mesh-adaptive CN-MLS scheme: (a) 3D concentration pro“le; and (b) the

corresponding re“ned mesh.

Figure 17. Computational results for t ¼ 30 days of the advective transport from a borehole with pulsed
potential boundary, obtained using the mesh-adaptive CN-MLS scheme: (a) 3D concentration pro“le; and

(b) the corresponding re“ned mesh.
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7. CONCLUSIONS

In this paper, certain advective transport problems for ”uid-saturated porous media are
examined using a computational approach, where, due to the presence of ”uid pressure
transients, the ”ow velocity “eld is both time- and space-dependent. The piezo-conduction
equation is used in the study to determine the pore ”uid pressure transients in a ”uid-saturated
porous medium. The time- and mesh-adaptive numerical schemes are proposed, respectively, for
the modelling of one- and multi-dimensional advective transport problems with time- and space-
dependent ”ow velocity to achieve an optimum computational performance. The computational
results for one-dimensional semi-in“nite domains as well as three-dimensional axisymmetric
domains are presented to illustrate the need for adaptive procedures, for handling a non-
classical hyperbolic conservation equation with time- and position-dependent advective ”ow
velocities and with steep advective transport fronts.
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