
MECH. RESo COMMo Vol. 4(4), 241-246, 1977. Pergamon Press. Printed in USA. 

AXlSYMMETRIC DEFORMATION OF A WINKLER LAYER BY INTERNALLY LOADED ELASTIC 
HALFSPACES 

A.P.S. Selvadurai 
Department of Civil Engineering, Carleton University, Ottawa, Canada 

(Received 4 April 1977; accepted for print 28 May 1977) 

Introduction 

The present work is concerned with the axisymmetric interaction of a Winkler 
medium contained between two homogeneous, isotropic elastic halfspaces. The 
Winkler medium, which is composed of a dense array of independent spring 
elements, is in bonded contact with the half spaces of differing elastic 
characteristics. The bonded contact provides continuity of displacement at 
interfaces of the Winkler medium and the elastic halfspaces. The elastic 
half spaces are subjected separately to a Mindlin force, namely, a concentrated 
force which acts at the interior of the halfspace and directed along the axis 
of symmetry (Fig. i). The method of solution adopted here is based on the 
use of Kankel transform techniques outlined by Sneddon [i]. Formal integral 
relationships are developed for the surface displacements of the individual 
halfspaces and for the stress distribution in the Winkler layer. It is 
found that these particular integral representations give closed form results, 
when evaluated at the axis of symmetry. The basic problem discussed here is 
of interest in connection with certain problems in fracture mechanics [2] . 

Analysis 

The axially symmetric problem relating to a hemogeneous isotropic elastic 

halfspace which is subjected to an axisymmetric normal traction q(r) on its 

plane boundary and a concentrated force P at a distance c from the origin of 

coordinates is examined. The internal concentrated force is assumed to act 

in the negative z-direction of the spatial coordinate system (Fig. I). The 

solution to the surface load problem is generated by employing Hankel 

transform techniques. It can be shown that the transformed value of the 

surface displacement of the halfspace in the z-direction [u z (r,0) = w (r)], 
q 
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due to the external traction a(r) is given by 

-0 a (i-~) -0 
w (~)= ~ q (~) (i) 
a G~ 

where 
P (~c/a)~ ~0(~) = ~ [2 + (i-~) J e-~C/a" (5) 
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Compression of The Winkler Layer 

a (l-v) 
w0(~) = n [~0(~) _ ~0(~)] (6) 
n G ~ n 

n 

where G and v , (n = 1,2) are the elastic parameters of the halfspaces 1 
n n 

and 2 respectively, and 

P ~Cn/a j ~0(~) = n 
n ~ [2 + ~ ~ e-~Cn/a ; (n = 1,2) 

n 
(7) 

are the equivalent representations of (5) for the regions 1 and 2 respectively 

Also, the transformed constitutive relationship for the Winkler layer is 

-0 -0 -0 
q ($) = -k [Wl(~) + w2(~) ] (8) 

where k is a material parameter. The elimination of ~0(~) between (6) and 
n 

(8), and the subsequent application of the inversion theorem (3) yields the 

following expression for the stress in the Winkler layer: 

where 

q(r) =/~ (i-~i) 

(ka) o GI a2 

(l-v 2 ) G 1 

F = (i_~i) G2 

is a 'relative stiffness' parameter. 

-o o 
{Sl(~) + rg (~)} 
[ka ] J0 (~r/a) d~ 
~i (l-Vl) [I+F] + 1 

(9) 

Similarly, the surface displacements of the respective halfspaces can be 

presented in the contracted form 
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l-vn) ] 

w m(r) co L~a-~G n [{O(6) - ~O(6)] - ~0m ([) :/ 
[ka2 (l-~m)/Gm] o i ~-- { G + G } 

m n 

J0(6r/a) d~. 

(10) 

The specific expressions for the surface displacements of the halfspace 

regions 1 and 2 are recovered by substituting m = i, n = 2 and m = 2, n = 1 

in (i0), respectively. In addition, the contact stress q(r) can be 

directly employed to derive appropriate expressions for the stresses and 

displacements in the two halfspace re~ions. 

Evaluation of The Infinite Integrals 

The general numerical evaluation of the integral expressions for the surface 

displacements w (r) and the contact stress q(r) can be performed by using a 
m 

direct numerical integration technique. Briefly, such numerical integration 

is performed by representing the integrand as an infinite series bounded by 

subsequent zeros of J0(<r/a). The application of a Gauss-Legendre quadrature 

technique for the evaluation of each interval of the integrand yields rapidly 

convergent results. Alternative procedures are also discussed by Sneddon 

et al. [5]. 

It is, however, of interest to note that the integral representations (9) 

and (i0) do infact reduce to very compact closed forms for specific values 

of r. For example, the expression for the contact stress (q) when evaluated 

at the origin (r = 0) gives 

2 kP c lc/a 

=~-~ ~ ~ [l(p -l)e Ei(_ice/a) + 9__ {~ - I + a__}] . q(0) 
4~a2G c ~ c 

a=1 ~ (ii) 

Similarly, the surface displacements Wm(r) when evaluated at the origin give 

W m (0) - Pmcm [~-~I - ~m _ a___}c + l{l-~m }elcm/a Ei(-ICm/a)] + 
4~ra2G Cm m 

m 
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(l-v) kP c 
+ (I-P)elCn/al Ei(-ICn/a)} + (12) + 4~G mG a n n [{a__c n 

m n n 

i-~ P c 

_ {a__e + (l-~m)elcm/a Ei(-%Cm/a)} (nl_~ pmcm 
m m n n 

m)] 

In (ii) and (12) larg I I <~ ; (ci/a) > 0 and 

2(l-v )a (i-9) (l-v) 
e m n 

U c ; I = ka [ G + G ] ; (13) 
m n 

also Ei(-x) is the exponential integral, which is related to the function 

E 1 (x) according to Ei (-x) = - E 1 (x) ; tabulated numerical values for E 1 (x) 

are given by Pagurova [6] and Abramowitz and Stegun [7]. For the special 

case of identical loading by identical halfspaces the equations (ii) and (12) 

reduce to the convenient forms 

q(0) 
[Pk/2~cG] 

w(0) 
[ P/4zcG] 

= l{~-l}eIEi(-l) + {~ - I + i} , 

- l{1-u}eIEi(-1) + {I - ~ - i} , 

(14)" 

where the length parameter a has been set equal to c. = c. It is evident 
l 

that the relationships (14) are also in agreement with equivalent results 

derived from the constitutive relationship for the Winkler layer (8) 

evaluated at r = 0, i.e. q(0) = - 2kw(0). 
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