
factors are obtained for t h r e e  general c r a c k  problems, all involving an elastic 

elliptic inclusion in an infinite matrix. Numerical results are presented for a range 

o f  geometric parameters; the effects o f  the mismatch o f  the s h e a r  modulus o f  the 

inclusion and t h a t  o f  the matrix are a l s o  considered. 

INTRODUCTION 

In recent years, there has been increasing attention paid 
to the study of cracks approaching, terminating, 
crossing, or lying along bimaterial interfaces, see, e.g. 
Refs 1-14. Solutions to these problems have important 
applications in geomechanics, biomechanics, and, 
generally, the study 
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special 

DIRECT EVALUATION OF STRESS INTENSITY 
FACTORS USING BEM 

The analytical and numerical formulation of the 
boundary element method is well documented in the 
literature, see, e.g. Refs 36 and 39. For a homogeneous 
and isotropic elastic domain, the direct boundary 
integral equation (BIE) relating the displacements ui 
and the tractions t i at the boundary S, in Cartesian 
coordinates xi, may be written, using indicial notation, 
a s :  

Cjie04.08 0 TD
1 15n, 

elements, 

3 

xi( ) = NC( )xf 
c=l 

3 

Ui(~) : E 
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In BEM however, because the displacements and 
tractions are independently represented, their variations 
in such a quarter-point element, when using the shape 
functions given in eqn 
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Fig. 3. Problem (I). 

intensity factor defined by: 

K = K~ + iKii (12) 

The stresses at distance r ahead of  the crack-tip are 
related to this complex stress intensity factor by 

1 Kr -i* 
coshTre (~r°° + i"rr°)l°=° = 2v/~r (13) 

In eqn (13), the stresses cr00 and "Cro are with respect to a 
local polar co-ordinate system with the origin at the 
crack-tip; the bonded interface corresponds to 0 = 0 and 
the free crack faces of material 1 and material 2 are 
defined by 0 = - r r  and 0 = 7r respectively. Also 

1 /~l + B;I~2 
= ~ In (14) 

# 2  + /~2#1 

is the bimaterial constant where the subscripts denote 
the material type number. It should be noted that 
because the tensile and shear effects are coupled near the 
interface crack-tip, Kt and KII here cannot be defined in 
the classical separate form as for homogeneous materi- 
als (see, e.g. Ref. 43). The complex stress intensity factor 
as defined above may also be written as 

K =  Ko ei~v (15) 

where K o and q are the modulus and argument, 

) o T 

2c 

Fig. 4. Problem (II). 

1 o l 
Fig. 5. Problem (III). 

respectively, of the complex stress intensity factor. Thus 

go = Igl = ~ / 2  + K~ (16) 

~0 = tan- l (Ki i /Ki)  (17) 

It can be shown (see, e.g. Ref. 44) that the maximum 
amplitude of  the singular stresses in the vicinity of the 
crack-tip is determined by K o, and unlike KI and Ktt, Ko 
is not oscillatory in form. It can further be shown that 
the strain energy release rate is directly proportional to 
K 2. The fact that Ko is not oscillatorily singular means 
that its determination is less likely to suffer numerical 
resolution difficulties as would be the case if KI and Kn 
are to be determined directly here. Knowledge of  Ko and 
tI, for a given cracked 3 o n f i g u r t i o n  and floadngu3ondiion ewllaaownevr eneabl the aner gip strass strte t o  be r e s a t o d  to osom tracke oexensitn traiermtn  

b U s n g u the tquarerm-poin crack-tip e.lemens odesraibe t e r  l i r  and employngursimiar aropcedurs aor oderivngus e q s  

tnd a(11), sexpass tn  sequivalen to gihes t e q u t i o n   aor eirectly dobtainngu Ko for the rbimaermtl i n  e r m f a c ecracke tma calsobe dobtained.c35dThe car, owith
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Fig. 6. Typical BEM mesh for Problem (I). 
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Table 2a. Normalised stress intensity factors, K A = (KI)A/K, 
for point A in Problem ( I I ) , / (  = ax/Tr(b + d) 

c/a b/2c #2/#1 
5 10 20 100 

0.02 0.565 0.463 0.400 0.341 
0.35 0'590 0-481 0"407 0.324 

1/3 0.50 0.634 0.526 0.445 0.333 
0'65 0.665 0'559 0.480 0.357 
0'80 0.718 0'619 0.544 0'435 

0.20 0.639 0.556 0.504 0.454 
0"35 0-662 0.569 0.504 0.426 

1/2 0'50 0-711 0'617 0.543 0-429 
0'65 0-738 0'656 0.587 0.450 
0.80 0.791 0.721 0'666 0.547 
0.20 0-771 0.717 0.681 0.644 
0.35 0-783 0.717 0.665 0'598 
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Table 3a. Normalised stress intensity factors, /CA = (Kt)A/[(, 
for point A in Problem 

c/a 0 #2/#1 
5 10 20 100 

30 ° 0.599 0.562 0.541 0.521 
60 ° 0.553 0.522 0.509 0.503 

1/3 90 ° 0.665 0.634 0.610 0.583 
120 ° 0.798 0.794 0.793 0.790 

30 ° 0.633 0.607 0.593 0.581 
60 ° 0.669 0.648 0.639 0.634 

1/2 90 ° 0.881 0.856 0.841 0-825 
120 ° 1.034 1.028 1.024 1.020 

30 ° 0.711 0.696 0.689 0.683 
60 ° 0.844 0.829 0.821 0.815 

1 90 ° 0.996 0.982 0.974 0.967 
120 ° 1-128 1.119 1-113 1.109 

30 ° 0.803 0.794 0.789 0.785 
60 ° 0.925 0.917 0.912 0.908 

2 90 ° 1.004 0.996 0-992 0.988 
120 ° 1.081 1-074 1.070 1.067 

30 ° 0.854 0.848 0.844 0.841 
60 ° 0.949 0-942 0.939 0.936 

3 90 ° 1.002 0.996 0.993 0.990 
120 ° 1.054 1.049 1-046 1.044 

to un i fo rm tension ~ at  the remote  ends in the d i rect ion 
perpend icu la r  to the p lane o f  the crack.  F igure  6 shows a 
typical  BEM mesh used for  the analysis o f  this prob lem.  
Only  
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Fig. 9. (a) Variation of (Kj)A/K with c/a; /~ = av/[vr(b + d)]; 
b/2c = 0"8. (b) Variation of (K1)B/R with c/a; 

K = a~/[~-(b + d)]; b/2c = 0"8. 

only one-half of the physical problem needs to be 
modelled as there is a plane of symmetry. 

The numerical results from the BEM analysis for 
the stress intensity factors at the two crack tips, A and 
B in Fig. 4, are listed in Table 2. The values are 
normalised with respect to /~, where k = ~ + d), 
and are denoted by (K1)A and (/(1)8 for the two 
points, respectively. Examining first the effects of the 
inclusion geometry and its material property on the 
stress intensity factor at the crack-tip A in the matrix, 
it can be seen that (K/)A/K decreases as the ratio 
#2/#1 increases. Also as c/a increases from 1/3 to 3, 

I i * 
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X 

t \ 
r . . . . .  I : / ~ x , ,  

I I ' ,  ' , !  ,.. . . . . .  .i 

Fig. 10. Typical BEM mesh for Problem (llI). 

(KI)A/K increases for a given relative crack length 
b/2c. 

These trends are exactly opposite from what was 
observed earlier in Problem (I) where the crack-tips are 
also in the matrix. Figures 9(a) and (b) show. as 
examples, the variations of these stress intensity factors 
with the inclusion geometry ratio c/a for a given relative 
crack size b/2c, in this case b/2c = 0.8. It is worth 
noting too that the stress intensity factor at A, for all the 
cases treated 
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