平特五不中

News

Bash brothers of chemistry discover unusual material

'Katsenite' named after 平特五不中 researcher who analyzed short-lived material鈥檚 chemical structure

The research group of Prof. Tomislav Fri拧膷i膰 in 平特五不中鈥檚 Department of Chemistry has made a name for itself in the little-known, but growing field of 鈥渕echanochemistry,鈥 in which chemical transformations are produced by milling, grinding or shearing solid-state ingredients 鈥 brute force, in other words, rather than fancy liquid agents. 鈥淵our coffee maker grinds things,鈥 and grinding molecules in the lab involves much the same principle, Fri拧膷i膰 notes. Using mechanical force also has the significant advantage of avoiding the use of environmentally harmful bulk solvents.

Published: 23 March 2015

In late 2012, a trans-Atlantic team of researchers co-led by Fri拧膷i膰 reported they had been able to observe a milling reaction in real time, by using highly penetrating X-rays to observe the rapid chemical transformations as a mill mixed, ground, and transformed simple ingredients into a complex product. 聽Now, the researchers have used this technique to discover a short-lived, structurally unusual metal-organic material created during the milling process. In a paper published March 23 in Nature Communications, the scientists dub the material 鈥渒atsenite,鈥 after the first author of the article, Athanassios D. Katsenis. Now a postdoctoral fellow at 平特五不中, Katsenis was a visiting student in Fri拧膷i膰鈥檚 group when the research was conducted. He analyzed the topology of the material -- the arrangement and connections between the structural 鈥榥odes鈥 of its crystal structure -- and realized that it didn鈥檛 correspond to anything previously seen.

The discovery provides the first concrete evidence of something that has long been suspected, the researchers conclude:聽 milling creates temporary phases with chemical structures that are not achievable under conventional conditions.

鈥淲hile this particular katsenite-type structure is unlikely to be of any practical use, the discovery represents a breakthrough that impacts our understanding of large-scale processing of materials and opens a new environment to generate previously inaccessible structures,鈥 Fri拧膷i膰 says. Besides all that, he adds, 鈥淚t is just great to have a chemical structure type named after a researcher at 平特五不中!鈥

Other contributors to the study include a group led by Ivan Halasz from the Institute Ru膽er Bo拧kovi膰 (Croatia), as well as researchers from the Max-Planck Institute for Solid-state Chemistry (Germany) and the European Synchrotron Radiation Facility (ESRF, France).

-----------------------------------------------------------------------------------------

In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework,鈥滽atsenis et al, Nature Communications, 23 March 2015. DOI: 10.1038/ncomms7662

-----------------------------------------------------------------------------------------

IMAGE: Schematic view of katsenite鈥檚 topology, with different colours depicting different types of nodes in its crystal structure
CREDIT: Athanassios D. Katsenis

Back to top